TABLE OF QC-POWER-3PC REGISTERS
The following table shown all the QC-POWER-3PC registers. All registers are 16-bit integer type (signed or unsigned).

MEASURED VALUES (Function code \$ 03)

Register HEX	Word	Description	M.U.	Type
\$1000	2	3-PHASE SYSTEM VOLTAGE	[V]	(Unsigned)
\$1002	2	PHASE VOLTAGE $\mathrm{L}_{1-\mathrm{N}}$	[V]	(Unsigned)
\$1004	2	PHASE VOLTAGE $\mathrm{L}_{2-\mathrm{N}}$	[V]	(Unsigned)
\$1006	2	PHASE VOLTAGE $\mathrm{L}_{3-\mathrm{N}}$	[V]	(Unsigned)
\$1008	2	LINE TO LINE VOLTAGE L_{1-2}	[V]	(Unsigned)
\$100A	2	LINE TO LINE VOLTAGE L_{2-3}	[V]	(Unsigned)
\$100C	2	LINE TO LINE VOLTAGE L_{3-1}	[V]	(Unsigned)
\$100E	2	3-PHASE SYSTEM CURRENT	[mA]	(Unsigned)
\$1010	2	LINE CURRENT L_{1}	[mA]	(Unsigned)
\$1012	2	LINE CURRENT L_{2}	[mA]	(Unsigned)
\$1014	2	LINE CURRENT L_{3}	[mA]	(Unsigned)
\$1016	2	3-PHASE SYSTEM POWER FACTOR	[-]	(Signed)
\$1018	2	POWER FACTOR L_{1}	[-]	(Signed)
\$101A	2	POWER FACTOR L_{2}	[-]	(Signed)
\$101C	2	POWER FACTOR L_{3}	[-]	(Signed)
\$101E	2	3-PHASE SYSTEM COS \varnothing	[-]	(Signed)
\$1020	2	PHASE $\cos \varnothing_{1}$	[-]	(Signed)
\$1022	2	PHASE $\cos \varnothing_{2}$	[-]	(Signed)
\$1024	2	PHASE $\mathrm{COS} \varnothing_{3}$	[-]	(Signed)
\$1026	2	3-PHASE SYSTEM APPARENT POWER	[VA]	(Unsigned)
\$1028	2	APPARENT POWER L_{1}	[VA]	(Unsigned)
\$102A	2	ACTIVE POWER L_{2}	[VA]	(Unsigned)
\$102C	2	ACTIVE POWER L_{3}	[VA]	(Unsigned)
\$102E	2	3-PHASE SYSTEM REACTIVE POWER	[W]	(Signed)
\$1030	2	REACTIVE POWER L_{1}	[W]	(Signed)
\$1032	2	REACTIVE POWER L_{2}	[W]	(Signed)
\$1034	2	REACTIVE POWER L_{3}	[W]	(Signed)
\$1036	2	3-PHASE SYSTEM REACTIVE POWER	[VAR]	(Signed)
\$1038	2	REACTIVE POWER L_{1}	[VAR]	(Signed)
\$103A	2	REACTIVE POWER L_{2}	[VAR]	(Signed)
\$103C	2	REACTIVE POWER L_{3}	[VAR]	(Signed)
\ldots				
\$1046	2	FREQUENCY	[mHz]	(Unsigned)
\$1048	2	NEUTRAL CURRENT	[mA]	(Unsigned)
...				
\$1096	2	TEMPERATURE	[${ }^{\circ} \mathrm{C}$]	(Unsigned)
\$1098	2	HOURS COUNTER	[dh]	(Unsigned)

NOTE:

- WHEN THE INSTRUMENT CAN'T MEASURE IT SEND 0000 AS VALUE.

- means that there are registers not consecutive

ENERGY COUNTERS

REGISTERS TABLE with SETUP value EN = BI-DIR (mported /exported active energy counters)

Register HEX	Word	Description	Symbol	M.U.	Type
\$103E	2	3-PHASE SYS. ACTIVE ENERGY Imported	kWhr +	[100*Wh]	(Unsigned)
\$1040	2	3-PHASE SYS. REACTIVE INDUCTIVE ENERGY	kVArh +	[100*VARh]	(Unsigned)
\$1042	2	3-PHASE SYS. ACTIVE ENERGY Exported	kWhr -	[100*Wh]	(Unsigned)
\ldots					
\$104E	2	PHASE L1 ACTIVE ENERGY Imported	kWhr+ L1	[100*Wh]	(Unsigned)
\$1050	2	PHASE L2 ACTIVE ENERGY Imported	kWhr+ L2	[100*Wh]	(Unsigned)
\$1052	2	PHASE L3 ACTIVE ENERGY Imported	kWhr+ L3	[100*Wh]	(Unsigned)
\$1054	2	PHASE L1 ACTIVE ENERGY Exported	KWhr- L1	[100*Wh]	(Unsigned)
\$1056	2	PHASE L2 ACTIVE ENERGY Exported	KWhr- L2	[100*Wh]	(Unsigned)
\$1058	2	PHASE L3 ACTIVE ENERGY Exported	KWhr- L3	[100*Wh]	(Unsigned)
\$105A	2	3-PHASE SYS. REACTIVE CAPACITIVE ENERGY	kVArh -	[100*VARh]	(Unsigned)

REGISTERS TABLE with SETUP value EN = TOT-PAR (Totalizer / resettable counters)

Register HEX	Word	Description	Symbol	M.U.	Type
$\$ 103 E$	2	3-PHASE SYS. ACTIVE ENERGY Totalizer	Kwh Tot.	$\left[100^{*} \mathrm{~Wh}\right]$	(Unsigned)
$\$ 1040$	2	3-PHASE S. REACTIVE ENERGY Totalizer	kVArh Tot.	$\left[100^{*} \mathrm{VARh}\right]$	(Unsigned)
$\$ 1042$	2	3-PHASE SYS. ACTIVE ENERGY Resettable	Kwh Part.	$\left[100^{*} \mathrm{~Wh}\right]$	(Unsigned)
$\$ 1044$	2	3-PHASE S. REACTIVE ENERGY Resettable	kVArh Part.	$\left[100^{* V A R h] ~}\right.$	(Unsigned)
\ldots					
$\$ 104 E$	2	PHASE L1 ACTIVE ENERGY Totalizer	Kwh L1 Tot.	$\left[100^{*} \mathrm{~Wh}\right]$	(Unsigned)
$\$ 1050$	2	PHASE L2 ACTIVE ENERGY Totalizer	Kwh L2 Tot.	$\left[100^{*} \mathrm{~Wh}\right]$	(Unsigned)
$\$ 1052$	2	PHASE L3 ACTIVE ENERGY Totalizer	Kwh L3 Tot.	$\left[100^{*} \mathrm{~Wh}\right]$	(Unsigned)
$\$ 1054$	2	PHASE L1 ACTIVE ENERGY Resettable	Kwh L1 Part.	$\left[100^{*} \mathrm{~Wh}\right]$	(Unsigned)
$\$ 1056$	2	PHASE L2 ACTIVE ENERGY Resettable	Kwh L2 Part.	$\left[100^{*} \mathrm{~Wh}\right]$	(Unsigned)
$\$ 1058$	2	PHASE L3 ACTIVE ENERGY Resettable	Kwh L3 Part.	$\left[100^{*} \mathrm{~Wh}\right]$	(Unsigned)

REGISTERS TABLE with SETUP value EN = TIMEBAND (TIMEBAND b1 / b2 counters)

Register HEX	Word	Description	Symbol	M.U.	Type
$\$ 103 E$	2	3-PHASE SYS. ACTIVE ENERGY Timeband 1	Kwh b1.	$\left[100^{*} \mathrm{~Wh}\right]$	(Unsigned)
$\$ 1040$	2	3-PHASE S. REACTIVE ENERGY Timeband 1	KVArh+ b1	$\left[100^{*} \mathrm{VARh}\right]$	(Unsigned)
$\$ 1042$	2	3-PHASE SYS. ACTIVE ENERGY Timeband 2	Kwh b2.	$\left[100^{*} \mathrm{~Wh}\right]$	(Unsigned)
$\$ 1044$	2	3-PHASE S. REACTIVE ENERGY Timeband 2	KVArh+ b2.	$\left[100^{*} \mathrm{VARh}\right]$	(Unsigned)
\ldots					
$\$ 104 \mathrm{E}$	2	PHASE L1 ACTIVE ENERGY Timeband 1	Kwh L1 b1	$\left[100^{*} \mathrm{~Wh}\right]$	(Unsigned)
$\$ 1050$	2	PHASE L2 ACTIVE ENERGY Timeband 1	Kwh L2 b1	$\left[100^{*} \mathrm{~Wh}\right]$	(Unsigned)
$\$ 1052$	2	PHASE L3 ACTIVE ENERGY Timeband 1	Kwh L3 b1	$\left[100^{*} \mathrm{~Wh}\right]$	(Unsigned)
$\$ 1054$	2	PHASE L1 ACTIVE ENERGY Timeband 2	Kwh L1 b2	$\left[100^{*} \mathrm{~Wh}\right]$	(Unsigned)
$\$ 1056$	2	PHASE L2 ACTIVE ENERGY Timeband 2	Kwh L2 b2	$\left[100^{*} \mathrm{~Wh}\right]$	(Unsigned)
$\$ 1058$	2	PHASE L3 ACTIVE ENERGY Timeband 2	Kwh L3 b2	$\left[100^{* W h]}\right.$	(Unsigned)
$\$ 105 A$	2	3-PHASE S. CAPACITIVE ENERGY Timeband 1	KVArh- b1.	$\left[100^{* V A R h] ~}\right.$	(Unsigned)
$\$ 105 C$	2	3-PHASE S. CAPACITIVE ENERGY Timeband 2	KVArh- b2.	$\left[100^{*} \mathrm{VARh}\right]$	(Unsigned)

VALUES STORED IN EEPROM (Function code \$03)

Register HEX	Word	Description	M.U.	Type
$\$ 1060$	2	MAX ISTANT. CURRENT L1	$[\mathrm{mA}]$	(Unsigned)
$\$ 1062$	2	MAX ISTANT. CURRENT L2	$[\mathrm{mA}]$	(Unsigned)
$\$ 1064$	2	MAX ISTANT. CURRENT L3	$[\mathrm{mA}]$	(Unsigned)
$\$ 1066$	2	MAX ISTANT. 3-PHASE ACTIVE POWER	$[\mathrm{W}]$	(Signed)
$\$ 1068$	2	MAX ISTANT. 3-PHASE APPARENT POWER	$[\mathrm{VA}]$	(Unsigned)
$\$ 106 A$	2	MAX AVG (max demand) CURRENT L1	$[\mathrm{mA}]$	(Unsigned)
$\$ 106 \mathrm{C}$	2	MAX AVG (max demand) CURRENT L2	$[\mathrm{mA}]$	(Unsigned)
$\$ 106 E$	2	MAX AVG (max demand) CURRENT L3	$[\mathrm{mA}]$	(Unsigned)
$\$ 1070$	2	MAX AVG (max demand) 3-PH. ACTIVE POWER	$[\mathrm{W}]$	(Signed)
$\$ 1072$	2	MAX ISTANT. VOLTAGE L1	$[\mathrm{V}]$	(Unsigned)
$\$ 1074$	2	MAX ISTANT. VOLTAGE L2	(Unsigned)	
$\$ 1076$	2	MAX ISTANT. VOLTAGE L3	[VAr]	(Unigned)
$\$ 1078$	2	MAX ISTANT. 3-PHASE REACTIVE. POWER	$[\mathrm{VAr}]$	(Signed)
$\$ 107 A$	2	MAX AVG (max demand) 3-PH. REACTIVE POWER	$[\mathrm{VAr}]$	(Unsigned)
$\$ 107 C$	2	MAX AVG (max demand) 3-PH. APPARENT POWER	$[\mathrm{W}]$	(Signed)
$\$ 107 E$	2	LAST AVERAGE 3-PHASE ACTIVE POWER	$[\mathrm{VAr}]$	(Signed)
$\$ 1080$	2	LAST AVERAGE 3-PHASE REACTIVE POWER	$[\mathrm{VA}]$	(Unsigned)
$\$ 1082$	2	LAST AVERAGE 3-PHASE APPARENT POWER		$[\mathrm{mA}]$
\ldots			$[\mathrm{mA}]$	(Unsigned)
$\$ 108 A$	2	LAST AVERAGE CURRENT L1	$[\mathrm{mA}]$	(Unsigned)
$\$ 108 C$	2	LAST AVERAGE CURRENT L2		
$\$ 108 E$	2	LAST AVERAGE CURRENT L3		

WRITE PARAMETERS (function \$10)

Registers to reset energies and measured values stored

Writing these registers MUST BE DONE in a single message sending both MSB and LSB words.

Register HEX	Word	Description		Write value	
			MSB Word	LSB Word	
\$11BO	2	RESET ENERGY COUNTERS	$\$ 11 B 0$	$\$ 55 A A$	
\$11B2	2	RESET MAX. ISTANTANEOUS VALUES	$\$ 11 B 2$	$\$ 55 A A$	
$\$ 11 B 4$	2	RESET MAX AVG (max demand) VALUES	$\$ 11 B 4$	$\$ 55 A A$	
$\$ 11 B 6$	2	RESET ALL VALUES (MAX and counters values)	$\$ 11 B 6$	$\$ 55 A A$	

Example:

The follow message cause the reset of MAX AVG values in device at address 1 (follows Hex bytes) 011011 B4 00 020411 B4 55 AA [CRC16]

NOTE:

When SETUP value is EN = BI-DIR (bidirectional) writing registers \$11B0-\$11B1 or \$11B6-\$11B7 all the energy counters will be reset.
When SETUP value is EN = TOT-PAR (totalizer and resettable counters) writing registers \$11B0-\$11B1 or \$11B6-\$11B7 only the resettable counters will be zeroed.
When SETUP value is EN = TIMEBAND (Timeband counters) writing registers \$11B0-\$11B1 or \$11B6-\$11B7 all the energy counters will be reset.
READ \& WRITE QC-POWER-3PC SETTINGS (Function code \$03 \& \$10)

Register HEX	Word	Description	Range
$\$ 11$ AO	2	KCT TRANSFORM RATIO IL1-IL2-IL3	$1 \div 4000$ (KVT ratio is from 0.1 to 400) $1=0.1$ $\ldots=\ldots$ $4000=400$
$\$ 11$ A2	2	KVT TRANSFORM RATIO * 0.1	

VALUES STORED IN EEPROM (Function code \$03)

Register HEX	Word	Description	Range
\$109E	1	MSB BYTE: SYNC MODE LSB BYTE: ENERGY MODE	$\begin{aligned} & \hline \text { MSB BYTE VALUE MEANINGS } \\ & \hline 1=\text { EXTERNAL SYNC } \\ & 2=\text { INT SYNC }=50 \mathrm{~Hz} \\ & 3=\text { INT SYNC }=60 \mathrm{~Hz} \\ & \text { LSB BYTE VALUE MEANINGS } \\ & \hline 1=\text { TIMEBAND MODE } \\ & 2=\text { TOTAL } / \text { PARTIAL MODE } \\ & =\text { NORMAL (SINGLE COUNTER) } \end{aligned}$
\$109F	1	MSB BYTE: NEUTRAL LINE MODE LSB BYTE: SINGLE PHASE / 3PHASE MODE	MSB BYTE VALUE MEANINGS 1 = 4-WIRE (WITH NEUTRAL WIRE) $2=3$-WIRE LSB BYTE VALUE MEANINGS 1 = 3PHASE UNBALANCED $2=3$ PHASE BALANCED $3=$ SINGLE PHASE

READING EXAMPLE
This is an example of transmitted data to QC-POWER-3PC at address 01, requesting 16 variables, as follows:

Register HEX	Word	Description	Range	Typo
$\$ 101 E$	2	3-PHASE SYSTEM POWER FACTOR	$[-]$	(Signed)
$\$ 1020$	2	POWER FACTOR L1	$[-]$	(Signed)
$\$ 1022$	2	POWER FACTOR L2	$[-]$	(Signed)
$\$ 1024$	2	POWER FACTOR L3	$[-]$	(Signed)
$\$ 1026$	2	$3-P H A S E ~ S Y S T E M ~ A P P A R E N T ~ P O W E R ~$	$[V A]$	(Unsigned)
$\$ 1028$	2	APPARENT POWER L_{1}	$[V A]$	(Unsigned)
$\$ 102 A$	2	APPARENT POWER L_{2}	$[V A]$	(Unsigned)
$\$ 102 C$	2	APPARENT POWER L_{3}	$[V A]$	(Unsigned)
$\$ 102 E$	2	3-PHASE SYSTEM ACTIVE POWER	$[W]$	(Unsigned)
$\$ 1030$	2	ACTIVE POWER L_{1}	$[\mathrm{~W}]$	(Unsigned)
$\$ 1032$	2	ACTIVE POWER L_{2}	$[\mathrm{~W}]$	(Unsigned)
$\$ 1034$	2	ACTIVE POWER L_{3}	$[\mathrm{~W}]$	(Unsigned)
$\$ 1036$	2	3-PHASE SYSTEM REACTIVE POWER	$[V A R]$	(Unsigned)
$\$ 1038$	2	REACTIVE POWER L_{1}	$[V A R]$	(Unsigned)
$\$ 103 A$	2	REACTIVE POWER L_{2}	$[V A R]$	(Unsigned)
$\$ 103 C$	2	REACTIVE POWER L_{3}	$[V A R]$	(Unsigned)

Stream data to send to QC-POWER-3PC (H suffix mean hex data format):

01 H	QC-POWER-3PC address
03 H	Read function
10 H	Address of 1st register requested $(101 \mathrm{EH})$
1 EH	
00 H	Nr of Register requested $(2$ registers for each variable $=32$ registers $=0020 \mathrm{H})$
20 H	
20 H	CRC
D4H	CRC

Response from QC-POWER-3PC:

01 H	QC-POWER-3PC address
03 H	Read function
40 H	Nr. of send bytes
\cdots	Follow 64 bytes of data If
all data is zero (00) the CRC is the following	
05 H	CRC
11 H	CRC

TROUBLESHOOTING

If response from QC-POWER-3PC doesn't happen:

- check connection from QC-POWER-3PC and RS232/RS485 converter;
- check if data outgoing from the RS232 serial port of the PC come in the S232/485 converter - try to increase the wait time for response (300 ms is good);
- check if the transmitted data stream is EXACTLY as in example, monitoring the data on the RS485 serial line with a terminal (i.e. Hyperterminal or other emulator);
- be sure that the turnaround-time of the converter RS232/485 is set in range 1 to 2 MS .

